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One-particle random walk on a graph

Linear evolution of the probability distribution (linear algebra)
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Multi-particle random walk on a graph

R R
S S

Independent evolution @ interparticle interactions

4

Non-linear behaviour (particle influenced by configuration of the others)
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One-particle walk

Many walkers (Reaction networks)

@ Master equation and Rate equation

Quantum (Fock-space) techniques

@ The Hamiltonian and evolution of operators

Main reference: [Baez2012] (see last slide with bibliography)
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One-particle random walk on a graph

@ Graph (oriented, weighted) with vertex set V = {1,2,3}
e Probability distribution p = (p1, p2, p3)

-4 0 3
o Weights — Transition rate matrix H=1| 4 -2 1
0 2 -4

H is infinitesimal stochastic: H; >0 (i # j) and > ;.\, Hj = 0 (V})
(= conservation of probability)
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One-particle random walk on a graph

e Evolution equation (continuous time):

. . d
Hp, that is 4P = Z(Hijpj — Hjipi) (1)

i
J
JF#i
(c.f. Schrodinger equation ih%h/}) = H|y))
e Solution: p(t) = etHp(0)

D1 b2 p3

e
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Many walkers

e From particle description ( “where are individual particles located")
to field description (“how many particles occupy individual places”)

o Indistinguishable particles S
— definite (micro)state
characterized by
occupation numbers

3

n3

~ 0 505000
e MM |
9305050

i=(ny,...,nk) € N§

e Statistical (macro)state: (111,7),?@\;6 (list of microstate probabilities)
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Many walkers - examples

@ Population dynamics:

vertices <> animal species

evolution <> birth, death, predation 2?5 E Q
)

@ Chemical reaction networks:

vertices <> substances

evolution <+ chemical reactions
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Complexes and transitions

o Complex: occupation vector (€ N&) with (typically) small entries

(2,1,0) (0,0,2)

@ Elementary transition 7: change of one complex into another

5(7) ... source complex
t(r) ... target complex
r(7) ... rate constant

Example: chemical reaction 2H, + Oy — 2H>0O
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Master equation

Evolution of statistical state:

a,_ZHa,

where many-body transition rate matrix

Haz = r(")i%) (05 o 50y -s(r) — O,

(2)

(3)

/" i N
trans. rate for occup. ﬁ‘ ‘n becoming i’ via 7-‘ ‘ﬁ’ transitioning away‘
Notation:
o Vector exponent 7* = nj' - - - n}*
e Falling power n*=n(n—1)---(n—s+1)

o Kronecker delta §7 7 =1 if i’ = i (otherwise d7 7 = 0)

Remark: Matrix H is infinitesimal stochastic, > - Hy

O ( v ”)
nn
V. Zatloukal (Czech Tech. Univ. Prague) Field-theoretical description of many-body rar




Rate equation

Evolution of average occupations X = (x1,...,xk) (xi = >_5ni V)

5= S AO(Em) - () (@)

Non-linear system of equations (dynamical system)

Good approximation (reduction) of the master equation for large
occupation numbers [Baez2013]
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Example: Lotka-Volterra predator-prey model

Elementary transitions: 7 € {p, b, d}

@ predation: »

S(p) = (1,1) = (2,0) = (p) M > %
@ birth: > g

S6)=(01) % (0.2)={b) _o 5 —> o o
o death:

5(d) = (1,0) % (0,0) = £(d) M. o " o o

Rate equations: (xj ... predator population, x> ... prey population)

dxq dxo

—— = IpX1X2 — rgX1 ? = —IpX1X2 + IpX2 (5)
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Statistical state - power series representation

— For each vertex i = 1,..., k introduce auxiliary variable z;

— Represent statistical state (zbﬁ)ﬁeNg by power series (probability
generating function)

V(z,..,ze) =Y azfte--z . V(D) =v(,...,1)=1 (6)

Stochastic Fock space: all real (formal) power series in zi, ..., zx

1) Definite microstate 2) Statistical mixture of microstates

423
v = 212573 W = 1003282273 + 10052222572 + 101202125
ny =

9 ng =3

R ng =2 R

R R > Y

>y
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@ Product state: two independent particles A and B with location
distributions p* and p&

. A . 1
W(@) = (5" )% 2) =) (o] +pPe)az (1)
— 208 PR
I7./

| symmetry — indistinguishability |

o Coherent state (single vertex, resp. many vertices):

‘ Poisson distribution with mean x‘
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Creation and annihilation operators

Inspired by quantum field theory (second quantization [Kleinert2016, Ch.2]),
— introduce for each vertex creation operator a,T:

i

vy — . t=on _ _m ni+1 Ny
aV=zV |, a7"=z"---z/""" .-z (9)

and annihilation operator a;:

0

aW=o—V , a7 =nz Z g (10)
Zj

° aIT adds (for every microstate) one particle onto vertex i

@ a; removes one particle from vertex i (n; particles to choose from)
e Commutation relations: [A, B] = AB — BA

[aia aj] - 511 ) [aia aj] =0 ) [a:_f7 aj] =0 (1]‘)

See [D0il1976] [Grassberger1980] [Baez2012] [Baez2013]
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Hamiltonian operator

Turn the many-body transition rate matrix

Hﬁ/ﬁ = Z r(T)ﬁg(T)(5,7/7,7_,_;(7)_;(7) - (517/,5) (12)

T

into the Hamiltonian operator

A=Y r(r) (5“(” — a7 0 (13)

T

— Then master equation turns into evolution equation for generating
series W(Z, t) [Baez2013]:
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Examples of Hamiltonian operators

o Non-interacting walkers:

J rij — ..
s(i,j)=1(0,...,1,...,0) = (0,...,1,...,0) = (i, )
k
H= Z r,-j(a:-r—a}r)aj (16)

@ Lotka-Volterra model:
ai,al ... predator operators; a;,az ... prey operators

/:I: T2_TT T2_T 1_T 17
rp(ay aja)aiaz + rp(a, ay)az + rq ap)a (17)

@ Branching process (on one vertex):
s(m) = (1) = (m) = t(m)

H=r(1-a)a+ i rm(al” —al)a (18)
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Evolution operator

o The Hamiltonian H defines time evolution operator U(t) via:

du -,
e =HU . U@ =1 (19)

Assuming, for simplicity, that rate constants r(7) (and therefore H)
tH
=e

are time-independent: U(t)
e State evolution can be cast, using V(2) = W(at)1, and A1 =0, as
V(7 t) = U(t)W(Z,0) = V(e aTetH 0)1 (20)
At(t)

Here Al(t) satisfies (Vi)

dAl o N -1 t i
5 = HAl=U@I[H5]U()  A(0) =2 (21)
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Example: Branching process

Hamiltonian

A=r(1-aha —i—Zrm " —aha (22)
yields equation for Af(t) (recall: [a, aT] =1)

dAT >
_af _af tHO) — Af
=0 o(1 — A" —I—E:rm AN | AT(0)=a (23)
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Example: Branching process

Hamiltonian

H = ro(1 — a') —i—Zrm 1 (22)

yields equation for Af(t) (recall: [a, aT] =1)

T o ”
ddit (=AY + Y AT EA) A =al (29

m=2
— Assuming rp,, = 0 for m > 2 (particles only vanish at rate rp)
Al(t) =1 — et 4 g0t (24)
— Evolved state reads

V(z,t) =W(l—e ™ +e ™20)=> 1,(0)(1—e ™ +e Pz)" (25)

Time evolution transformed z to 1 — e~ "0t 4 =0t 7.
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Example: Non-interacting walkers

Hamiltonian

k
A= ri(al —al)a (26)
ij=1

yields

9 _ STri(Al =AY =>"AlH; . Al(0) = af (27)

dt—iu,'j—iiu= =a,
where we denoted Hjj = rjj (for i # j) and Hjj = — ), rjj elements of a
‘rate matrix’ H.
— We find

Al(t) = Z al(e™); — Wz t)=v(eMz0) (28)
For one particle: ((0, .. 71,. ,0) — 1) ¥i(t)

v(Z, 1) Z% (0) ZZ' i —ZZ ()02 (29)
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Example: Lotka-Volterra model

Hamiltonian

A

= (s’ sl 2 i - 30
ro(ay —ajap)araz + ro(ay — ap)ax + ra(1 — ap)ay (30)

yields
dA! 2
dTl = ro(Al" — ATAD Ay + rg(1 — A (31)
dA! > )
e = (AL = ALAD AL+ (A~ A)) (32)

where A(t) = et ze—tH
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Example: Lotka-Volterra model

Hamiltonian

A

B =r(al’ —aiaf Pl 1 al 30
rp(aj ajag)aiar + rp(ay ay)ax + rq( a;)ai (30)

yields
dj\} = rp(AI2 — ATAD Ay + rg(1 — AD) (31)
dj\} = rp(AI2 — AJ{A;)Al + fb(A;2 - A;) (32)
where A(t) = etfze—tH
— % = rp(—2A] + AD) ArAs + rgAy (33)
% = r, AL A Ay + rp(—2A5 + 1) A, (34)

System of coupled, non-linear, operator-valued differential equations.
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Evolution of average occupations

@ Define occupation number operators:
Ni=ala; , N=N+--+ Ny (35)

such that N;Z7 = Zia%,-(zfl - 'Z/:,k) =n

iZ"
o Expected (or average) value: (...) = (...)|,_7
(V) =1 (normalization of probability) (36)

(N;W) = Z Yan; (average occupation number) (37)

e Evolution of x; = (N;V):

%w,-w) = (NAW) = 37 r(7) ((7) — si(7)) (W) (38)

If (NDW) = (NW)5) we get S% =S r(7)(E(r) — 5(7)) x5
(for coherent states holds [Baez2013])
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Analogies with quantum theory

One-particle random walk <> One-particle quantum mechanics
probability distribution p quantum state (wave function) [¢))
transition rate matrix H one-particle Hamiltonian H

Many-body random walk < Many-body quantum mechanics

Occupation number description <+ Field theory (second quantization)

Hamiltonian H Hamiltonian H

non-interacting walkers free quantum field theory (QFT)
master equation for V(Z) QFT in Schrodinger picture
evolution of operators Aﬁ, A QFT in Heisenberg picture

rate equation for X classical field equations

Despite similarities in formalism, the typical questions to address can be
rather different.
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@ We only considered one field (variables 7 and operators 37, 3).

—

—» Easily generalized to several fields: Z,w,... and 3,3, b, b, ...

@ Mean-field approximation: expansion of H up to quadratic order in
creation and annihilation operators around ‘classical’ mean values.

@ Path-integral approach [Peliti1985]

@ In physics the background (spacetime) often simple, uniform (flat).
Complex networks have rich, often non-rigid, structure.
— Evolution of networks (i.e., of rates r(7)) — plasticity
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