Publications:

V. Zatloukal
Local time of Levy random walks: a path integral approach
Phys. Rev. E 95, 052136 (2017)
arXiv:1702.02488
Beamer (Path Integration in Complex Dynamical Systems 2017, Leiden)

V. Zatloukal
Classical field theories from Hamiltonian constraint: Local symmetries and static gauge fields
arXiv:1611.02906 (2016)
Beamer (ICCA11, 2017, Ghent)

P. Jizba, J. Korbel and V. Zatloukal
Tsallis thermostatics as a statistical physics of random chains
Phys. Rev. E 95, 022103 (2017)
arXiv:1610.07110

V. Zatloukal
Classical field theories from Hamiltonian constraint: Symmetries and conservation laws
arXiv:1604.03974 (2016)

V. Zatloukal
Hamiltonian constraint formulation of classical field theories
Adv. Appl. Clifford Algebras 27, 829851 (2017)
arXiv:1602.00468
Beamer (Rethinking Foundations of Physics 2016, Dorfgastein, Austria)
Poster

P. Jizba and V. Zatloukal
Localtime representation of path integrals
Phys. Rev. E 92, 062137 (2015)
arXiv:1506.00888
Beamer (SigmaPhi 2014, Rhodos)
Poster

V. Zatloukal
Classical field theories from Hamiltonian constraint: Canonical equations of motion and local HamiltonJacobi theory
Int. J. Geom. Methods Mod. Phys. 13, 1650072 (2016)
arXiv:1504.08344
Beamer (AGACSE 2015, Barcelona)

V. Zatloukal, L. Lehman, S. Singh, J. K. Pachos, and G. K. Brennen
Transport properties of anyons in random topological environments
Phys. Rev. B 90, 134201 (2014)
arXiv:1207.5000
Beamer (2015, Berlin)

P. Jizba and V. Zatloukal
Pathintegral approach to the WignerKirkwood expansion
Phys. Rev. E 89, 012135 (2014)
arXiv:1309.0206
Poster

H. Kleinert and V. Zatloukal
Green function of the doublefractional FokkerPlanck equation: Path integral and stochastic differential equations
Phys. Rev. E 88, 052106 (2013)
arXiv:1503.01667
Beamer (Zimanyi School 2016, Budapest)

L. J. Lehman, V. Zatloukal, J. K. Pachos, G. K. Brennen
Braiding Interactions in Anyonic Quantum Walks
Quantum Computers and Computing 12 (1), pp. 5162 (2012)
arXiv:1210.3446

L. Lehman, V. Zatloukal, G. K. Brennen, J. K. Pachos, and Z. Wang
Quantum Walks with NonAbelian Anyons
Phys. Rev. Lett. 106, 230404 (2011)
arXiv:1009.0813
