Václav Zatloukal's homepage

Department of Physics
Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague
Room No. B120

Research interests:
path integral methods
Hamiltonian approach to classical and quantum field theory
geometric (Clifford) algebra and calculus
anyons and topological quantum information

Curriculum vitae

Teaching: MECHcv2017

  1. V. Zatloukal
    Local time of Levy random walks: a path integral approach
    Phys. Rev. E 95, 052136 (2017)
    Beamer (Path Integration in Complex Dynamical Systems 2017, Leiden)

  2. V. Zatloukal
    Classical field theories from Hamiltonian constraint: Local symmetries and static gauge fields
    arXiv:1611.02906 (2016)
    Beamer (ICCA11, 2017, Ghent)

  3. P. Jizba, J. Korbel and V. Zatloukal
    Tsallis thermostatics as a statistical physics of random chains
    Phys. Rev. E 95, 022103 (2017)

  4. V. Zatloukal
    Classical field theories from Hamiltonian constraint: Symmetries and conservation laws
    arXiv:1604.03974 (2016)

  5. V. Zatloukal
    Hamiltonian constraint formulation of classical field theories
    Adv. Appl. Clifford Algebras 27, 829-851 (2017)
    Beamer (Rethinking Foundations of Physics 2016, Dorfgastein, Austria)

  6. P. Jizba and V. Zatloukal
    Local-time representation of path integrals
    Phys. Rev. E 92, 062137 (2015)
    Beamer (SigmaPhi 2014, Rhodos)

  7. V. Zatloukal
    Classical field theories from Hamiltonian constraint: Canonical equations of motion and local Hamilton-Jacobi theory
    Int. J. Geom. Methods Mod. Phys. 13, 1650072 (2016)
    Beamer (AGACSE 2015, Barcelona)

  8. V. Zatloukal, L. Lehman, S. Singh, J. K. Pachos, and G. K. Brennen
    Transport properties of anyons in random topological environments
    Phys. Rev. B 90, 134201 (2014)
    Beamer (2015, Berlin)

  9. P. Jizba and V. Zatloukal
    Path-integral approach to the Wigner-Kirkwood expansion
    Phys. Rev. E 89, 012135 (2014)

  10. H. Kleinert and V. Zatloukal
    Green function of the double-fractional Fokker-Planck equation: Path integral and stochastic differential equations
    Phys. Rev. E 88, 052106 (2013)
    Beamer (Zimanyi School 2016, Budapest)

  11. L. J. Lehman, V. Zatloukal, J. K. Pachos, G. K. Brennen
    Braiding Interactions in Anyonic Quantum Walks
    Quantum Computers and Computing 12 (1), pp. 51-62 (2012)

  12. L. Lehman, V. Zatloukal, G. K. Brennen, J. K. Pachos, and Z. Wang
    Quantum Walks with Non-Abelian Anyons
    Phys. Rev. Lett. 106, 230404 (2011)

  • Doctoral thesis: Applications of Path Integrals in Quantum Theory and Statistical Physics (2016),
    (supervised by Dr. Petr Jizba)

  • Master thesis: Anyons and Their Significance in Quantum Mechanics and Statistical Physics (2011),
    (supervised by Dr. Petr Jizba)

  • Research project: Anyonic Quantum Walks (2010),
    (supervised by Dr. Petr Jizba and Dr. Jiannis Pachos)

  • Bachelor thesis: Applications of Supersymmetric Quantum Mechanics (2009),
    (supervised by Dr. Petr Jizba)